Sabtu, 23 Juli 2011

Proses oksidasi reduksi di sel darah merah.

dalam proses oksidasi-reduksi dalam sel. sitokrom merupakan senyawa heme oleh z arifin - 2008 - artikel terkaitdalam sel darah merah serta karboksi peptidase dan dehidrogenase dalam hati. dalam proses oksidasi-reduksi dalam sel. sitokrom merupakan senyawa heme yang diisolasi (kultur sel, sel darah merah,dll), penetapan viabilitas sel : uji inklusi pewarna uji toksisitas berdasarkan pada reduksioleh d juwita - 2009 - artikel terkaitakseptor elektron pada suatu reaksi oksidasi-reduksi.24. 2.2.2. sumber meningkatkan rasio sel darah merah terhadap volumenya sehingga �paru-paru � aliran darah. �pembakaran (diperlukan o pembakaran glukosa dalam sel hidup reduksi. oksidasi. cuo = pengoksidasi (oksidator) reduksi enzim dlm sel ( misal flavo protein ) akan terbentuk. hidrogen peroksida ( h2o2) , juga radikal . hemolisin : mmenghemolisiskan sel darah merah. nadh � nad terjadi melalui reduksi piruvat � laktat ketidaksempurnaan jalur pentosa fosfat � hemolisis sel darah merah oleh i bab - dinyatakan dengan 2 - artikel terkaitsel darah merah normal, berbentuk lempeng bikonkaf dengan diameter kira- . pada reduksi methemoglobin dan peroksida, gugus tiol tersebut darah merah.

Proses transfer electron dimikrosom

Transfer mentransfer electronElectron (ET) adalah proses yang bergerak elektron dari atom atau spesies kimia (misalnya molekul) untuk atom lain atau spesies kimia. ET adalah deskripsi mekanistik dari konsep termodinamika redoks, dimana oksidasi dari kedua mengubah reaksi pasangan.

Proses biologi banyak melibatkan reaksi ET, termasuk mengikat oksigen, fotosintesis, respirasi, dan rute detoksifikasi. Selain itu, proses transfer energi dapat diformalkan sebagai dua pertukaran elektron (dua bersamaan ET peristiwa dalam arah yang berlawanan) dalam kasus jarak kecil antara molekul mentransfer. ET umumnya melibatkan reaksi kompleks logam transisi, [1] [2] tapi sekarang ada banyak contoh ET dalam kimia organik.Dalam batin-bola ET, dua pusat redoks adalah kovalen terkait selama ET. Jembatan ini dapat permanen, dalam hal transfer elektron acara disebut transfer elektron intramolekular. Lebih umum, bagaimanapun, ikatan kovalen ini adalah fana, membentuk hanya sebelum ET dan kemudian melepaskan mengikuti acara ET. Dalam kasus seperti itu, transfer elektron disebut transfer elektron antarmolekul. Sebuah contoh yang terkenal dari bola bagian dalam proses yang hasil ET melalui perantara dijembatani sementara adalah pengurangan [COCl (NH3) 5] 2 + oleh [Cr (H2O) 6] 2 +. Dalam hal ini ligan klorida adalah ligan menjembatani bahwa kovalen menghubungkan mitra redoks.
[Sunting] Outer-bola transfer elektron
Artikel utama: Outer-bola transfer elektron

Di luar lingkup ET-reaksi, pusat redoks berpartisipasi tidak dihubungkan melalui jembatan apapun selama acara ET. Sebaliknya, elektron "hop" melalui ruang dari pusat mengurangi ke akseptor. Outer-sphere ET adalah dengan antarmolekul definisi. Lingkup transfer elektron terluar dapat terjadi antara spesies kimia yang berbeda atau antara spesies kimia identik yang hanya berbeda di negara oksidasi. Proses kemudian disebut self-tukar. Sebagai contoh, diri pertukaran menggambarkan merosot reaksi antara permanganat dan satu-elektron manganat relatif berkurang:

[MnO4] - + [Mn * O4] 2 - → [MnO4] 2 - + [Mn * O4] -

Secara umum, jika transfer elektron lebih cepat daripada substitusi ligan, reaksi akan mengikuti transfer-bola elektron terluar.

Sering terjadi ketika salah satu / kedua reaktan inert atau jika tidak ada ligan menjembatani cocok.

Sebuah konsep kunci dari Marcus teori adalah bahwa tingkat self-reaksi pertukaran secara matematis berhubungan dengan tingkat "reaksi silang". Reaksi silang memerlukan mitra yang berbeda lebih dari oksidasi mereka. Salah satu contoh (ribuan) adalah pengurangan permanganat dengan iodida untuk membentuk yodium dan, sekali lagi, manganat.
[Sunting] Lima langkah dari reaksi lingkup terluar

* 1. reaktan berdifusi bersama-sama keluar dari cangkang pelarut mereka => prekursor kompleks (membutuhkan kerja = wr)
* 2. perubahan panjang ikatan, merombak pelarut => diaktifkan kompleks
* 3. Transfer elektron
* 4. Relaksasi panjang ikatan, molekul pelarut => penggantinya yang kompleks
* 5. Difusi produk (membutuhkan kerja = wp)

[Sunting] mentransfer elektron Heterogen
Artikel utama: transfer elektron Heterogen

Dalam transfer elektron heterogen, sebuah elektron bergerak antara spesies kimia dan elektroda solid-state. Teori menangani transfer elektron heterogen memiliki aplikasi dalam elektrokimia dan desain sel surya.
[Sunting] Teori

Teori yang berlaku umum pertama ET dikembangkan oleh Rudolph A. Marcus ke alamat luar-bola transfer elektron dan didasarkan pada pendekatan teori transisi-negara. Teori Marcus transfer elektron kemudian diperluas untuk mencakup inner-sphere transfer elektron oleh Hus Noel dan Marcus. Teori yang dihasilkan, disebut Marcus-Hush teori, telah memandu diskusi sebagian besar transfer elektron sejak itu. Kedua teori, bagaimanapun, semiklasik di alam, meskipun mereka telah diperluas untuk perawatan mekanik kuantum sepenuhnya oleh Joshua Jortner, Alexender M. Kuznetsov, dan lain-lain melanjutkan dari Golden Rule Fermi dan setelah bekerja sebelumnya di non-radiasi transisi. Selanjutnya, teori telah diajukan untuk memperhitungkan efek kopling vibronic pada transfer elektron. Secara khusus teori PKS transfer elektron [3].
[Sunting] Referensi

Struktur dan fungsi mitochondria

Mitokondria berbentuk bulat panjang atau seperti tongkat terdapat pada sel eukariotik aerob. Mitokondria dibatasi dua lapis membran yang kuat, fleksibel, dan stabil, serta tersusun atas lipoprotein. Membran dalam membentuk tonjolantonjolan yang disebut krista untuk memperluas permukaan agar penyerapan oksigen lebih efektif.

Ruangan dalam mitokondria berisi cairan disebut matriks mitokondria. Matriks ini kaya enzim pernapasan (sitokrom), DNA, RNA, dan protein. Perhatikan Gambar di bawah:

mitokondria


Fungsi Mitokondria

Mitokondria memiliki DNA sendiri yang mengkode sintesis protein spesifik. Mitokondria berfungsi dalam oksidasi makanan, respirasi sel, dehidrogenasi, fosforilasi oksidasif, dan sistem transfer elektron.
Oksidasi zat makanan di dalam mitokondria menghasilkan energi dan zat sisa. Secara sederhana reaksinya dapat ditulis sebagai berikut.

oksidasi mitokondria

Oksidasi hidrogen (H) dalam mitichondria

efinisi oksidasi dan reduksi dalam hal transfer hidrogen ini sudah lama dan kini tidak banyak digunakan. Oksidasi berarti kehilangan hidrogen, reduksi berarti mendapat hidrogen. Perhatikan bahwa yang terjadi adalah kebalikan dari definisi pada transfer oksigen.
Sebagai contoh, etanol dapat dioksidasi menjadi etanal:

Untuk memindahkan atau mengeluarkan hidrogen dari etanol diperlukan zat pengoksidasi (oksidator). Oksidator yang umum digunakan adalah larutan kalium dikromat(IV) yang diasamkan dengan asam sulfat encer.

Etanal juga dapat direduksi menjadi etanol kembali dengan menambahkan hidrogen. Reduktor yang bisa digunakan untuk reaksi reduksi ini adalah natrium tetrahidroborat, NaBH4. Secara sederhana, reaksi tersebut dapat digambarkan sebagai berikut:

Zat pengoksidasi (oksidator) dan zat pereduksi (reduktor)

* Zat pengoksidasi (oksidator) memberi oksigen kepada zat lain, atau memindahkan hidrogen dari zat lain.
* Zat pereduksi (reduktor) memindahkan oksigen dari zat lain, atau memberi hidrogen kepada zat lain.

Hub. Rantai pernafasan dengan senyawa fosfat berenergi tinggi

* Proses perubahan asetil ko-A → H + CO2
* Proses ini terjadi didalam mitokondria
* Pengambilan asetil co-A di sitoplasma dilakukan oleh: oxalo asetat → proses pengambilan ini terus berlangsung sampai asetil co-A di sitoplasma habis
* Oksaloasetat berasal dari asam piruvat
* Jika asupan nutrisi kekurangan KH → kurang as. Piruvat → kurang oxaloasetat




KETOSIS

* Degradasi asam lemak → Asetil KoA terjadi di Hati, tetapi hati hanya mengunakan sedikit asetil KoA → akibatnya sisa asetil KoA berkondensasi membentuk Asam Asetoasetat
* Asam asetoasetat merupakan senyawa labil yang mudah pecah menjadi: Asam β hidroksibutirat dan Aseton.
* Ketiga senyawa diatas (asam asetoasetat, asam β hidroksibutirat dan aseton) disebut BADAN KETON.


* Adanya badan keton dalam sirkulasi darah disebut: ketosis
* Ketosis terjadi saat tubuh kekurangan karbohidrat dalam asupan makannya → kekurangan oksaloasetat
* Jika Oksaloasetat menurun → maka terjadi penumpukan Asetil KoA didalam aliran darah → jadi badan keton → keadaan ini disebut KETOSIS


* Badan keton merupakan racun bagi otak → mengakibatkan Coma, karena sering terjadi pada penderita DM → disebut Koma Diabetikum
* Ketosis terjadi pada keadaan :
* Kelaparan
* Diabetes Melitus
* Diet tinggi lemak, rendah karbohidrat


RANTAI RESPIRASI

* H adalah hasil utama dari siklus Krebs ditangkap oleh carrier NAD menjadi NADH
* H dari NADH ditransfer ke → Flavoprotein → Quinon → sitokrom b → sitokrom c →sitokrom aa3 → terus direaksikan dengan O2 → H2O + Energi
* Rangkaian transfer H dari satu carrier ke carrier lainya disebut Rantai respirasi
* Rantai Respirasi terjadi didalam mitokondria → transfer atom H antar carrier memakai enzim Dehidrogenase → sedangkan reaksi H + O2 memakai enzim Oksidase




Urutan carrier dalam rantai respirasi adalah: NAD → Flavoprotein → Quinon → sitokrom b → sitokrom c → sitokrom aa3 → direaksikan dengan O2 → H2O + Energi

transfer elektron dalam sel

Reaksi respirasi merupakan reaksi katabolisme yang memecah molekul-molekul gula menjadi molekul anorganik berupa CO2 dan H2O. Tujuan respirasi adalah untuk mendapatkan energi melalui proses glikolisis. Senyawa gula diperoleh dari proses fotosintesis. Butiran amilum yang tersimpan dalam jaringan dan organ penyimpan cadangan makanan akan diubah kembali dalam bentuk glukoa fosfat di dalam sitoplasma sel. Kemudian glukosa fosfat akan dipecah menjadi piruvat dan masuk ke dalam siklus Krebs. Selama glikolisis berlangsung dan dalam siklus Krebs akan dihasilkan gas CO2 yang akan dikeluarkan dari dalam sel. Gas tersebut dengan berdifusi akan terkumpul dalam rongga-rongga antarsel dan bila tekanan telah cukup akan keluar dari jaringan.
C6H12O6 + 6O2 6CO2 + 6H2O
glukosa oksigen karbon dioksida air
Respirasi seluler adalah proses perombakan molekul organik kompleks yang kaya akan energi potensial menjadi produk limbah yang berenergi lebih rendah pada tingkat seluler. Pada respirasi sel, oksigen terlibat sebagai reaktan bersama dengan bahan bakar organik dan akan menghasilkan air, karbon dioksida, serta produk energi utamanya ATP. ATP (adenosin trifosfat) memiliki energi untuk aktivitas sel seperti melakukan sintesis biomolekul dari molekul pemula yang lebih kecil, menjalankan kerja mekanik seperti pada kontraksi otot, dan mengangkut biomolekul atau ion melalui membran menuju daerah berkonsentrasi lebih tinggi. Secara garis besar, respirasi sel melibatkan proses-proses yang disebut glikolisis, siklus Krebs atau siklus asam sitrat, dan rantai transpor elektron.
Rantai transpor elektron menerima elektron dari produk hasil perombakan glikolisis dan siklus Krebs dan mentransfer elektron dari satu molekul ke molekul lain. Energi yang dilepaskan dari setiap pelepasan elektron tersebut digunakan untuk membuat ATP.

1. SISTEM TRANSPOR ELEKTRON
Rantai transpor elektron adalah tahapan terakhir dari reaksi respirasi aerob. Transpor elektron sering disebut juga sistem rantai respirasi atau sistem oksidasi terminal. Transpor elektron berlangsung pada krista (membran dalam) dalam mitokondria. Molekul yang berperan penting dalam reaksi ini adalah NADH dan FADH2, yang dihasilkan pada reaksi glikolisis, dekarboksilasi oksidatif, dan siklus Krebs. Selain itu, molekul lain yang juga berperan adalah molekul oksigen, koenzim Q (Ubiquinone), sitokrom b, sitokrom c, dan sitokrom a.


Sistem Transpor Elektron

Pertama-tama, NADH dan FADH2 mengalami oksidasi, dan elektron berenergi tinggi yang berasal dari reaksi oksidasi ini ditransfer ke koenzim Q. Energi yang dihasilkan ketika NADH dan FADH2 melepaskan elektronnya cukup besar untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian koenzim Q dioksidasi oleh sitokrom b. Selain melepaskan elektron, koenzim Q juga melepaskan 2 ion H+.
Setelah itu sitokrom b dioksidasi oleh sitokrom c. Energi yang dihasilkan dari proses oksidasi sitokrom b oleh sitokrom c juga menghasilkan cukup energi untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian sitokrom c mereduksi sitokrom a, dan ini merupakan akhir dari rantai transpor elektron. Sitokrom a ini kemudian akan dioksidasi oleh sebuah atom oksigen, yang merupakan zat yang paling elektro negatif dalam rantai tersebut, dan merupakan akseptor terakhir elektron. Setelah menerima elektron dari sitokrom a, oksigen ini kemudian bergabung dengan ion H+ yang dihasilkan dari oksidasi koenzim Q oleh sitokrom b membentuk air (H2O). Oksidasi yang terakhir ini lagi-lagi menghasilkan energi yang cukup besar untuk dapat menyatukan ADP dan gugus fosfat organik menjadi ATP. Jadi, secara keseluruhan ada tiga tempat pada transpor elektron yang menghasilkan ATP.
Sejak reaksi glikolisis sampai siklus Krebs, telah dihasilkan NADH dan FADH2 sebanyak 10 dan 2 molekul. Dalam transpor elektron ini, kesepuluh molekul NADH dan kedua molekul FADH2 tersebut mengalami oksidasi sesuai reaksi berikut.
10 NADH + 5 O2  10 NAD+ + 10 H2O
2 FADH2 + O2  2 FAD + 2H2O
Setiap oksidasi NADH menghasilkan kira-kira 3 ATP, dan kira-kira 2 ATP untuk setiap oksidasi FADH2. Jadi, dalam transpor elektron dihasilkan kira-kira 34 ATP. Ditambah dari hasil glikolisis dan siklus Krebs, maka secara keseluruhan reaksi respirasi seluler menghasilkan total 38 ATP dari satu molekul glukosa. Akan tetapi, karena dibutuhkan 2 ATP untuk melakukan transpor aktif, maka hasil bersih dari setiap respirasi seluler adalah 36 ATP.

peranan enzim koenzym dan logam dalam oksidasi biologi

Oksidase Mengandung Tembaga Sitokrom oksidase merupakan hemoprotein yang tersebar luas dalam banyak jaringan, dengan gugus prostetik heme yang secara khas ditemukan dalam mioglobin, hemoglobin, serta sitrokom lain. Enzim ini merupakan komponem terakhir pada rantai pembawa (carrier) respiratorik yang ditemukan dalam mitokondria dan dengan demikian bertanggung jawab atas reaksi pemindahan elektron yang dihasilkan dari oksidasi molekul substrat oleh dehidrogenase kepada akseptornya yang terakhir, yaitu oksigen. Gas karbon monoksida, sianida, dan hydrogen sulfide merupakan racun bagi enzim sitokrom oksidase. Sifat yang berlainan sehubungan dengan efek karbon monoksida serta sianida. Penelitian yang lebih mutakhir menunjukkan bahwa kedua sitokrom tersebut bergabung dengan sebuah protein tunggal, dan kompleks tersebut dikenal sebagai sitokrom. Oksidase Lain Merupakan Flavoprotein Enzim flavoprotein memiliki flavin mononukleotida (FMN) atau flavin adenin dinukleotida (FAD) sebagai gugus prostetiknya. FMN dan FAD biasanya terikat erat-tetapi tidak secara kovalen dengan masing-masing protein apoenzimnya.banyak enzim flavoprotein mengandung satu atau lebih logam sebagai kofaktoresensial dan dikenal dengan nama metaloflavoprotein. Enzim yang termasuk kedalam kelompok enzim oksidase ini mencakup oksidase asam L-amino, suatu enzim terikat –FMN yang ditemukan dalam ginjal dengan spesifisitas umum untuk deaminasi oksidatif asam L-amino yang terdapat dialam.Enzim xantin oksidase tersebar luas dan terdapat didalam susu,usus halus, ginjal, serta hati. Enzim ini mengandung molibdenum dan mempunyai peranan penting dalam konversi basa purin menjadi asam urat sebagai produk nitrogenosa akhir utama, bukan saja dari metabolisme purin, tetapi juga dari katabolisme protein dan asam amino.Aldehid dehidrogenase merupakan enzim terikat-FAD yang terdapat didalam hati mamalia. Enzim ini merupakan metaloflavoprotein yang mengandung molibdenum serta besi nonheme dan bekerja pada senyawa aldehid serta substret N-heterosiklik.Mekanisme oksidase dan reduksi semua enzim ini bersifat sangat kompleks.meskipun demikian, bukti-bukti menunjukkan bahwa reduksi cincin isoaloksazin berlangsung dalam 2 yahap lewat intermediat.

proses oksidasi

Metode titrasi langsung dinamakan iodimetri mengacu kepada titrasi dengan suatu larutan iod standar .Sedangkan metode titrasi tak langsung dinamakan iodometri , adaah berkenaan dengan titrasi dari iod yang dibebaskan dalam reaksi kimia .Potensial reduksi normal dari sistem reversibel adalah 0,5345 volt.

I2 (solid) + 2e- ↔ 2I-

Persamaan diatas mengacu kepada suatu larutan-air yang jenuh dengan adanya iod padat, reaksi setengah sel ini akan terjadi, misalnya menjelang akhir titrasi dari iodida dengan suatu zat pengoksidasi seperti kalium permangganat , ketika konsentrasi ion iodida menjadi relatif rendah. Dekat permulaan atau dalam kebanyakan titrasi iodometri, bila ion iodida terdapat berlebih, terbentuklah ion triiodida :

I2 (aq) + I- ↔ I3-

Karena iod mudah larut dalam larutan iodida. Reaksi setengah sel itu lebih baik ditulis sebagai berikut :

I3- + 2e- ↔ I3-

Dan potensial reduksi standarnya adalah 0,5355 volt .Maka iod atau ion triiodida merupakan zat pengoksidasi yang jauh lebih lemah ketimbang kalium permangganat, kaliumdikhromat dan serium (IV) sulfat.

Dalam kebanyakan titrasi langsung dengan iod ,digunakan suatu larutan iod dalam kalium iodide, dan karena itu spesi reaktifnya adalah ion triiodida . Untuk tepatnya ,semua persamaan yang melibatkan reaksi-reaksi iod seharusnya ditulis dengan I3- dan bukan dengan I2 , misal :

I3- + 2S2O32- ↔ 3I- + S4O62-

akan lebih akurat dari pada :

I2 + 2S2O32- ↔ 2I- + S4O62-

Namun demi kesederhanaan, persamaan dalam buku ini biasanya lebih banyak ditulis dengan rumus-rumus iod molekuler dari pada ion triiodida.

Zat-zat pereduksi yang kuat ( zat-zat dengan potensial yang jauh lebih rendah) ,seperti timah(II)klorida, asam sulfat, hydrogen sulfida , dan natrium tiosulfat bereaksi lengkap dan cepat dengan iod, bahkan dalam larutan asam . dengan zat oereduksi yang agak lemah ,misal arsen trivalent, atau stibium trivalent ,reaksi yang lengkap hanya akan terjadi bila larutan dijaga tetap netral atau sangat sedikit suasana asam.Pada kondisi ini potensial reduksi dari zat pereduksi adalah minimum , atau daya mereduksinya adalah maksimum.

Jika suatu zat pengoksidasi kuat diolah dalam larutan yang netral atau larutan yang asam ,dengan ion iodide yang sangat berlebih , yang terakhir bereaksi sebagai zat pereduksi,dan oksidan akan direduksi secara kuantitatif. Dalam hal-hal demikian , sejumlah iod yang ekuivalen akan dibebaskan ,lalu dititrasi dengan larutan standar suatu zat pereduksi, biasanya natrium tiosulfat.

Potensial reduksi normal dari system iod-iodida tak bergantung pada pH larutan , selama yang terakhir berada pH ± 8 , pada nilai-nilai yang lebih tinggi , iod bereaksi dengan ion hidroksida untuk membentuk iodida dan hipoiodit yang sangat tidak stabil, dimana hasil terakhir ini cepat sekali diubah menjadi iodat dan iodide oleh reaksi oksidasi dan reduksinya sendiri :

I2 + 2OH- ↔ I- + H2O

3IO- ↔ 2I- +IO3-

Tembaga murni dapat digunakan sbagai standar primer untuk Iod dan natrium tiosulfat dan dianjurkan apabila tiosulfat harus digunakan untuk penetuan tembaga . potensial standar pasangan Cu (II) – Cu (I)

Cu 2+ + e ↔ Cu +

Adalah + 0,15 V dan dengan emikian iodium Eo = +0,53 V merupakan reaksi oksidasi yang lebih baik dari pada ion Cu (II) . Akan tetapi bila ion iodide ditambahkan pada suatu larutan Cu (II) ,maka suatu endapan CuI terbentuk.

2Cu2+ + 4 I- → 2 CuI (p) + I2

Reaksinya dipaksa berlangsung kekanan denagn pembentukan endapan dan juga dengan penambahan ion iodide berlabih.

pH larutan harus dipertahankan oleh suatu system buffer, lebih baik antara 3 dan 4 . Pada harga pH lebih tinggi hidrolisa sebagian dari ion Cu (II) berlangsung dan reaksi denagn ion iodide adalah lambat.dalam larutan berasam tinggi oksidasi dengan katalis tembaga dari ion iodide terjadi dengan kecepatan yang cukup tinggi.

Jika anion (sepsert asetat) digunakan dalam buffer membentuk suatu kompleks cukup stabil dengan ion Cu (II) , reaksi antara ion Cu (II) dan ion iodide dapat dicegah untuk berlangsung secara lengkap. Jika iodium dihilangkan dengan titrasi dengan tiosulfat, kompleks Cu(II) berdisosiasi untuk membentuk ion Cu (II) lebih benyak , yang pada gilirannay bereaksi denagn iodide untuk membebaskan lebih banyak iodium . Ini menyebabkan suatu titik akhir yang terulang kembali.

Telah diketahui bahwa iodium ditahan karena adsorbsi pada permukaan endapan tembaga (II) iodide dan membuatnya berwarna abu-abu dari pada putih. Kecuali kalau iodium dihilangkan , maka titik akhir dicapai terlalu cepat dan dapat berulang jika iodium lambat dilapaskan dari permukaan.

oksidasi biologi dan senyawa berernergi tinggi

oksidasi di definisikan sebagai pengeluaran electron dan reduksi sebagai penangkapan electron, sebagaimana di lukiskan oleh oksidasi ion fero menjadi feri e (elektron) Fe 2+ ¬ Fe3+ Dengan demikian, oksidasi selalu disertai reduksi aseptor electron. Prinsip ini osidasi – reduksi ini berlaku pada berbagai sistem biokimia dan merupakan konsep penting yang melandasi pemahaman sifat oksidasi biologi. kita ketahui bahwa banyak oksidasi biologi dapat berlangsung tanpa peran serta molekul oksigen, misalnya : dehidrogenasi. B. Hukum termodinamika I dan II Kaidah pertama termodinamika: Kaidah pertama ini merupakan hukum penyimpanan energi, yang berbunyi: energi total sebuah sistem, termasuk energi sekitarnya adalah konstan. Ini berarti bahwa saat terjadi perubahan di dalam sistem tidak ada energi yang hilang atau diperoleh. Namun energi dapat dialihkan antar bagian sistem atau dapat diubah menjadi energi bentuk lain. Contohnya energi kimia dapat diubah menjadi energi listrik, panas, mekanik dan sebagainya. Kaidah kedua termodinamika: Kaidah kedua berbunyi: entropi total sebuah sistem harus meningkat bila proses ingin berlangsung spontan. Entropi adalah derajat ketidakteraturan atau keteracakan sistem. Entropi akan mencapai taraf maksimal di dalam sistem seiring sistem mendekati keadaan seimbang yang sejati. Dalam kondisi suhu dan tekanan konstan, hubungan antara perubahan energi bebas (ΔG) pada sebuah sistem yang bereaksi, dengan perubahan entropi (ΔS), diungkapkan dalam persamaan: ΔG = ΔH – TΔS Keterangan: ΔH adalah perubahan entalpi (panas) dan T adalah suhu absolut. Di dalam kondisi reaksi biokimia, mengingat ΔH kurang lebih sama dengan ΔE, perubahan total energi internal di dalam reaksi, hubungan di atas dapat diungkapkan dengan persamaan: ΔG = ΔE – TΔS Jika ΔG bertanda negatif, reaksi berlangsung spontan dengan kehilangan energi bebas (reaksi eksergonik). Jika ΔG sangat besar, reaksi benar-benar berlangsung sampai selesai dan tidak bisa membalik (irreversibel). Jika ΔG bertanda positif, reaksi berlangsung hanya jika memperoleh energi bebas (reaksi endergonik). Bila ΔG sangat besar, sistem akan stabil tanpa kecenderungan untuk terjadi reaksi. Peran senyawa fosfat berenergi tinggi dalam penangkapan dan pengalihan energi Untuk mempertahankan kehidupan, semua organisme harus mendapatkan pasokan energi bebas dari lingkungannya. Organisme autotrofik melakukan metabolisme dengan proses eksergonik sederhana, misalnya tumbuhan hijau menggunakan energi cahaya matahari, bakteri tertentu menggunakan reaksi Fe2+  Fe3+. Sebaliknya organisme heterotrofik, memperoleh energi bebasnya dengan melakukan metabolisme yaitu pemecahan molekul organik kompleks. Adenosin trifosfat (ATP) berperan sentral dalam pemindahan energi bebas dari proses eksergonik ke proses endergonik. ATP adalah nukleotida trifosfat yang mengandung adenin, ribosa dan 3 gugus fosfat (lihat Gambar 3.1). Dalam reaksinya di dalam sel, ATP berfungsi sebagai kompleks Mg2+ Gambar 3.1 ATP diperlihatkan sebagai kompleks magnesium Gambar 3.2 ATP dan ADP Energi bebas baku hasil hidrolisis senyawa-senyawa fosfat penting dalam biokimia tertera pada Tabel 3.1. Terlihat bahwa nilai hidrolisis gugus terminal fosfat pada ATP terbagi menjadi 2 kelompok. Pertama, fosfat berenergi rendah yang memiliki ΔG lebih rendah dari pada ΔG0 pada ATP. Kedua, fosfat berenergi tinggi yang memiliki nilai ΔG lebih tinggi daripada ΔG0 pada ATP, termasuk di dalamnya, ATP dan ADP, kreatin fosfat, fosfoenol piruvat dan sebagainya. Senyawa biologik penting lain yang berenergi tinggi adalah tiol ester yang mencakup koenzim A (misal asetil-KoA), protein pembawa asil, senyawa-senyawa ester asam amino yang terlibat dalam sintesis protein, S-adenosilmetionin (metionin aktif), uridin difosfat glukosa dan 5-fosforibosil-1-pirofosfat.Gugus fosfat berenergi tinggi oleh Lipmann dilambangkan dengan ~℗. Simbol ini menunjukkan bahwa gugus yang melekat pada ikatan, pada saat peralihan pada suatu akseptor yang tepat, akan mengakibatkan pemindahan kuantitas energi bebas yang lebih besar. Oleh karena itulah sebagian ahli biokimia lebih menyukai istilah potensial pemindahan gugus daripada ikatan berenergi tinggi. Berdasarkan posisi ATP pada Tabel 3.1, maka ATP merupakan donor fosfat berenergi tinggi (donor energi bebas) bagi senyawa-senyawa di bawahnya. Di sisi lain, ADP dapat menerima fosfat berenergi tinggi untuk membentuk ATP dari senyawa yang berada di atas ATP dalam tabel. Akibatnya siklus ATP/ADP menghubungkan proses-proses yang menghasilkan ~℗ dan proses-proses yang menggunakan ~℗. Dengan demikian ATP terus dikonsumsi dan terus diproduksi. Proses terjadi dengan kecepatan sangat tinggi, karena depot ATP/ADP sangat kecil dan hanya cukup untuk mempertahankan jaringan aktif dalam beberapa detik saja. Ada 3 sumber utama ~℗ yang berperan dalam konservasi atau penangkapan energi. 1. Fosforilasi oksidatif Fosforilasi oksidatif adalah sumber ~℗ terbesar dalam organisme aerobik. Energi bebas untuk menggerakkan proses ini berasal dari oksidasi rantai respirasi di dalam mitokondria dengan menggunakan oksigen. 2. Glikolisis Dalam glikolisis terjadi pembentukan netto dua ~℗ yang terjadi akibat pembentukan laktat 3. Siklus asam sitrat Dalam siklus asam sitrat satu C. ENZIM YANG TERLIBAT DALAM PROSES OKSIDASI DAN REDUKSI DINAMAKAN OKSIDOREDUKTASE Dalam uraian berikut, enzim oksidoreduktase dipilah menjadi 4 kelompok,yaitu: 1. Enzim okidase 2. Dehidrogenase 3. Hidroperoksidase 4. Oksigenase  ENZIM OKSIDASE MENGGUNAKAN OKSIGEN SEBAGAI AKSEPTOR HIDROGEN Enzim oksidase mengatalisis pengeluaran hydrogen dari substrat dengan menggunakan oksigen sebagai akseptor hidrogennya. Enzim-enzim tersebut membetuk air atau hydrogen peroksida sebagai produk reaksi. Sebagi Oksidase Mengandung Tembaga Sitokrom oksidase merupakan hemoprotein yang tersebar luas dalam banyak jaringan, dengan gugus prostetik heme yang secara khas ditemukan dalam mioglobin, hemoglobin, serta sitrokom lain. Enzim ini merupakan komponem terakhir pada rantai pembawa (carrier) respiratorik yang ditemukan dalam mitokondria dan dengan demikian bertanggung jawab atas reaksi pemindahan elektron yang dihasilkan dari oksidasi molekul substrat oleh dehidrogenase kepada akseptornya yang terakhir, yaitu oksigen. Gas karbon monoksida, sianida, dan hydrogen sulfide merupakan racun bagi enzim sitokrom oksidase. Sifat yang berlainan sehubungan dengan efek karbon monoksida serta sianida. Penelitian yang lebih mutakhir menunjukkan bahwa kedua sitokrom tersebut bergabung dengan sebuah protein tunggal, dan kompleks tersebut dikenal sebagai sitokrom. Oksidase Lain Merupakan Flavoprotein Enzim flavoprotein memiliki flavin mononukleotida (FMN) atau flavin adenin dinukleotida (FAD) sebagai gugus prostetiknya. FMN dan FAD biasanya terikat erat-tetapi tidak secara kovalen dengan masing-masing protein apoenzimnya.banyak enzim flavoprotein mengandung satu atau lebih logam sebagai kofaktoresensial dan dikenal dengan nama metaloflavoprotein. Enzim yang termasuk kedalam kelompok enzim oksidase ini mencakup oksidase asam L-amino, suatu enzim terikat –FMN yang ditemukan dalam ginjal dengan spesifisitas umum untuk deaminasi oksidatif asam L-amino yang terdapat dialam.Enzim xantin oksidase tersebar luas dan terdapat didalam susu,usus halus, ginjal, serta hati. Enzim ini mengandung molibdenum dan mempunyai peranan penting dalam konversi basa purin menjadi asam urat sebagai produk nitrogenosa akhir utama, bukan saja dari metabolisme purin, tetapi juga dari katabolisme protein dan asam amino.Aldehid dehidrogenase merupakan enzim terikat-FAD yang terdapat didalam hati mamalia. Enzim ini merupakan metaloflavoprotein yang mengandung molibdenum serta besi nonheme dan bekerja pada senyawa aldehid serta substret N-heterosiklik.Mekanisme oksidase dan reduksi semua enzim ini bersifat sangat kompleks.meskipun demikian, bukti-bukti menunjukkan bahwa reduksi cincin isoaloksazin berlangsung dalam 2 yahap lewat intermediat. DEHIDROGENASE TIDAK DAPAT MENGGUNAKAN OKSIGEN SEBAGAI AKSEPTOR HIDROGEN Ada sejumlah besar enzim didalam kelompok ini. Enzim-enzim tersebut melaksanakan 2 fungsi utama: 1. pemindahan hidrogen dari substrat yang satu kepada substrat yang lain dalam reksi oksidasi-reduksi berpasangan . enzi dehidrogenase ini bersifat sangat spesifik untuk substratnya, tetapi sering memakai koenzim atau pembawa hidrogen yang sama seperti enzim dehidrogenase lain, misal, NAD. Karena reaksi berlangsung reversibel, sifat-sifat ini memudahkan senyawa ekuivalen preduksi dipindahkan secara bebas didalam sel. 2. sebagai komponem dalam rantai respirasi pengangkutan elektron dari substrat ke oksigen.  ENZIM HIDROPEROKSIDASE MENGGUNAKAN HIDROGEN PEROKSIDA ATAU PEROKSIDA ORGANIK SEBAGAI SUBSTRAT Ada dua tipe enzim yang masuk ke dalam kategori ini : peroksidase dan katalase. Kedua tipe enzim ini ditemukan baik pada hewan maupun tumbuhan. Enzim hidroperoksidase melindungi tubuh terhadap senyawa-senyawa peroksida yang berbahaya. Penumpukan senyawa peroksida dapat menghasilkanradikal bebas yang selanjutnya akan merusak membran sel dan keungkinan menimbulkan penyakit kanker serta aterosklerosis.  ENZIM OKSIGENASE MENGATALISIS PEMINDAHAN LANGSUNG DAN INKORPORASI OKSIGEN KE DALAM MOLEKUL SUBSTRAT Enzim oksigenase lebih berhubungan dengan sintesis atau penguraian berbagai tipe metabolit dibandingkan mengambil bagian dalam reaksi yang bertujuan memberikan enegi pada sel. Enzim-enzim dlam kelompok ini mengatalisis inkorporasi (penyatuan) oksigen kedalam molekul substrat.peristiwa ini berlangsung melalui 2 tahap : 1. pengikatan oksigen dengan enzim pada tapak aktif, 2. reaksi saat oksigen yang terikat direduksi atau dipindahkan kepada substrat. D. RANTAI RESPIRASI DAN FOSFORILASI OKSIDATIF Mitokondria telah mendapatkan nama yang tepat sebagai “pusat tenaga”sel karena di dalam organel inilah berlangsung seagaian besar peristiwa penangkapan energy yang berasal dari oksidasi respiratorik, system daam mitokondria yang memasangkan respirasi dengan proses pembentukan intermediate berenergi tinggi,ATP di sebut Fosforilasi Oksidatif. 1. Sejumlah Enzim Spesifik bertindak sebagai penanda bagi kompartemen yang dipisahkan oleh membran Mitokondria Mitokondra mempunyai membran eksterna yang bersifat permeabel terhadap sebagian besar Metabolit, membran eksterna yang permeabilitas nya selektif serta tersusun dalam bentuk lipatan atau Krista, serta matriks di dalam membran interna tersebut. Membran eksterna dapat di hilangkan melalui reaksi dengan digitonin dan dikarakterisasi oleh keberadaan monoamine oksidase, asil – koA sintetase, gliserofosfat asiltransferase, serta fosfolipase A¬2. Adenilkinase dan keratin kinase ditemukan dalam ruang antar membran. Fosfolipid kardiolipid teronsentrasi di dalam merman interna. Enzim – enzim larut pada siklus asm sitrat dan enzim – enzim pada reaksi β -oksidasi asam lemak berada dalam amatkriks sehingga harus ada mekanisme bagi pengangkut metabolit dan nukleotida melintasi membran interna. Enzim uksinat dehidrogenase ditemukan pada permukaan dalam membran interna mitokondria tempat enzim tersebut mengangkut unsure ekuivalen pereduksi ke rantai respirasi yang merupakan konstituen utama membran interna. 3-hidroksibutirat dehidrogenase juga terikat paa sisi matrks membran mitikondria dalam. Gliserol-3-fosfat dehidrogenase ditemukan pada permukaan luar membran interna, tempat enzim tersebut berada pada sisi metrics membran mitokondria dalam. Gliserol-3-fosfat dehidrogenase ditemukanpada permukaan luar merman interna, tempat enzim tersebut berada pada posisi yang tepat untuk turut berperan dalam pergerakan ulang – alik (shuttle) gliserofosfat 2. Rantai Respirasi Mengmpul Dan mengoksidasi Sejumlah Zat Ekvalen Pereduksi. Semua energy bermanfaat yang di bebaskan selama oksidasi asam lemak serta asam amino, dan hampir seluruh energy yang di lepaskan dari oksidasi karbohidratterdapat di dalam mitokondria sebagai unsure ekivalen pereduksi (-H atau electron). Mitokondria mengandung seri katalisator yang dikenal sebagai rantai respirasi. Yang mengumpulkan, Mengangkut unsure ekivalen pereduksi dan mengarahkan kepada reaksi dengan oksigen untuk membentuk air. Yang juga terdapat dalam mitokondria adalah rangkaian mesin untuk menangkap energy bebas yang di lepas sebagai fosfat berenergi tinggi. Mitokondria juga mengandung berbagai system enzim yang memang pada dasarnya bertanggaung jawab memproduksi sebagian besar unsure ekuivalen pereduksi , yaitu enzim – enzim β – oksidasi dan siklus asam sitrat. Siklus asam sitrat merupakan metabolism umum terakhir untuk oksidasi semua bahan mekanan utama. Komponen rantai respirasi tersusun dengan urutan potensial redoks yang meningkat Komponen utama rantai respirasi (lihat gambar ). Hydrogen dan electron mengalir melalui rantai tersebut dalam langkah – langkah dari komponen yang memiliki komponen yang memiliki potensial redoks lebih negative ke komponen dengan potensial redoks lebih terhadap yang lebih positif lewat suatu rentang redoks (redoks span) sebesar 1,1 v dari NAD+/NADH. Rantai respirasi dalam mitokondria terdiri atas sejumlah pembawa (carier) redoks yang berjalan dari system dehidrogenase spesifik NAD, lewat semua substrat berhubungan dengan rantai respirasi melalui dehidrogenase spesifik NAD; sebagian substrat karena potensial redoksnya lebih positif (missal, fumarat/suksinat) berhubungan langsungdengan protein flavoprotein dehidrogenase, yang pada giliranya akan berhubungan dengan enzim sitikrom pada rantai respirasi. Telah jelas bahwa terdapat sesuatu pembawa tambahan dalam rantai respirasi yang merangkaikan flavoprotein ke sitokrom b, anggota rantai sitokrom yang memiliki potensial redoks paling rendah. Zat ini yang di namakan ubikuinon atau Q (koenzim Q) terdapat di dalam mitokondria dalam bentuk kuinon teroksidasi pada keadaan aerob dan dalam bentuk kuinon tereduksi pada keadaan anaerob. Q merupakan konstituen lipid mitokondria: lipit lipit iterutama terdapat dalam bentuk fosfolipit yang menjadi bagian mitokondria. Rumus bangun Q sangat mirip dengan rumusan bangun vitamin K dan vitamin enzim. Ubikoinon juga menyerupai plastokuinon yang ditemukan dalam kloroplas. Semua zat ini dicirikan oleh rantai sampaipoliisoprenoid. Di dalam kloroplas. Semua zat ini dicirikan oleh rantai sampai piliisoprenoid. Didalam mitokondria, Q terdapat dalam jumlah sitoikimetrik berlebihan jauh lebih besar disbanding anggota lain respirasi, hal ini sesuai dengan fungsi Q yang bekerja sebagai komponen mobil rantai respirasi yang mengumpulkan unsure ekivalen pereduksi kompleks flavoprotein yang lebih terfiksasi dan mengantarkan kepada sitokrom. Komponen tambahan yang ditemukan dalam sediaan rantai respirasi adalah protein besi – sulfur (FeS ; besi nonhem) Unsur ini berikatan dengan flavonprotein (metaloplavoprotein) dan dengan sitokrom b. sulfur dan za besi dianggap berperan dalam mekanisme oksidoreduksi antara flavin dengan Q yang melibatkan perubahan pada hanya satu e’ tunggal dengan atom besi menjalani oksidoreduksi antara Fe2+ dan Fe3+.enzim dehidrogenase menganalisis proses perpindahan electron dari substrat kepada NAD rantai tersebut. Terdapat beberapa perbedaan dalam menyelenggarakan proses ini asam α – ketopiruvat keteloglutara ,mempunyai system dehidrogenase kompleks yang melibatkan lipoat dan FAD, sebelum electron dipindah kepada NAD rantai respirasi. Pemindahan electron dari enzim dehidrogenase lain seperti L(+)-3-hidroksiasil-KoA. D(-)-3-hidrosibutirat, prolin, glutamat, malat dan isositrat dehidrogenase berPasangan langsung dengan NAD ‘pada rantai respirasi. NADH (reduksi) pada rantai respirasi selanjutnya diksidasidasikan oleh enzim metaloflavoprotein – NADH dehidrogenase. Enzim ini mengandung FeS dan FMN,terikat erat pada rantai respirasi dan menghantarkan unsure ekivalen pereduksi kepada Q. Q juga merupakan titik pengumpulan dalam rantai respirasi bagi unsur – unsur ekivalen pereduksi yang berasal dari substrat lain yang berikatan langsung dengan rantai respirasi lewat enzim flavoprotein dehodrogenase. Substrat ini mencangkup suksinat, kolin, gliserol 3-fosfat, sarkosin, dimetiglisi, dan asil – KoA. Moietas (moiety) flavin semua enzim dehidrogenase ini adalah FAD. Elektron mengalir dari Q, melalui rangkaian sitokrom yang terlihat dalam ke molekul oksigen. Sitokrom tersusun dalam urutan poensial redoks yang meningkat. Gugus terminal sitokrom aa3 (sitokrom oksidase) bertanggung jawab atas penggabungan terakhir sejumlah unsu ekivalen pereduksi dengan molekul oksigen. System enzim ini ternyata mengandung tembaga, suatu komponen yang ditemukan dalam beberapa enzim oksidase. Sitokrom oksedase mempunyai afinitas sangat tinggi terhadap oksigen sehingga memungkinkan rantai respirasi berfungsi dengan kecepatan maksimal sampai benar benar – benar kehabisan o₂. Karena bersifat irefersibel (satu – satunya seaksi ireversibel dalam rantai respirasi), reaksi ini menentukan arah pergerakan ekuivalen pereduksi dalam rantai respirasi serta arah proses produksi ATP yang terangkai padanya. 3. Rantai respirasi menyediakan sebagian besar energy yang di tangkap di dalam metabolisme ADP merupakan molekul yang ditangkap sebagian energy bebas dalam bentuk fosfat berenergi tinggi, yang di lepas oleh proses katabolisme. ATP yang dihasilkan akan menghanarkan energi. Jadi, ATP dapat disebut sebagai “penukar” energy pada sel. Pada reaksi glikolisis , terjadi pengambilan netto langsung dan gugus fosfat berenergi tinggi , yang setara dengan kurang lebih 103,2 kj/mol glukosa. (secara invivo, ΔG untuk sintesis ATP dari ADP telah dihitung sebesar kurang lebih 51,6 kj/mol sehingga memungkinkan terdapatnya reaktan dalam konsentrasi aktualdi dalam sel. Nilai ini lebih besar dari pada nilai ΔG0 untuk hidrolisis ATP yang diperoleh dibawah konsentrasi standart 1,0 mol/L). karena 1 mol glukosa menghasilkan kurang lebih 2870 kj pada pembakaran sempurna, energy kyang ditangkap fosforilasi dalam proses glikolisis hana sedikit. Berbagai reaksi pada asam simsus asam sitrat pada lintasan terakhir untuk oksidasi lengkap glukosa mencangkup satu tahap fosforilasi, yaitu perubahan suksionil Ko-A menjadi suksinat kyang memungkinkan penangkapan tambahan hanya dua fosfat berenergi tinggi permol glukosa. Semua reaksi fosforilasi yang di uraikan terjadi pada tngkat substrat. Pemeriksaan terhadap mitokondria utuh yang melakukan respirasi mengungkap bahwa kalau substrat teroksidasi lewat enzim dehidrogenase yang terikat NAD dan rantai respirasi, kurang lebih 3 mol fosfat anorganik dan akan diinkorporasikan ke dalam 3 mol ADP untuk membentuk 3 mol ATP per mol O₂ yang di komsusi, yaitu rasio P : Oksidasi = 3. Sebaliknya kalau substrat dioksidasi melalui dehidrogenase yang terikat flavoprotein , hanya 2 mol ATP yang terbentuk , yaitu P : Oksidasi = 2. Kontrol Respiratorik Menjamn Pasokan ATP Yang Konstan Laju respiratorik mitokondria dapat dikontrol oleh konsentrasi ADP. Hal ini terjadi karena terjadi oksidasi dan fosforilasi berpasangan secara erat dengan kata lain, oksidasi tidak dapat berlangsung lewat ranotai respirasi bila pada saat yang bersamaan tidak terjadi berlangsung lewat rantai respirasi bila pada saat yang bersamaan tidak terjadi fosorilasi ADP. Chance dan wiliams menyebutkan 5 keadaan yang dapat mengontrol laju respirasi dalam mitokondria. Umumnya, kebanyakan sel dalam kondisi istirahat berada dalam status 4 dan respirasi di control oleh ketersediaan ADP. Jika kita menyelenggarakan kerja, ATP di ubah menjadi ADP. Jika kita menylenggarakan kerja, ATP diubah menjadi ADP ehingga memungkinkan terjadinya lebih banyak resprasi yang pada gilirannya akan memperbaharui persimpanan ATP. Dalam kondisi terentu akan terlihat bahwa konsentrasi fsfat anorganik dapat pula mempengaruhi kecepatan kerja rantai respirasi. Dengan semakan meningkatnya respirasi (seperti terjadinya pada saat olahraga), sel akan mendekati status 3 atau 5 jika kapasitas antai respirasi menjadi jenuh atau jika PO₂ turun dibawah nilai Km untuk sitokrom a₃. terdapatpula kemungkinan bahwa pengangkut ADP/ATP yangmemudahkan pemasukan ADP sitosol ke dalam dan ATP ke luar mitokondria, menjadi suatu penentu kecepatan respirasi mitokondria. Dengan demi kian, cara yang digunakan oleh proses – proses oksidatif biologic sehingga bebas yang dihasilkan dari oksidasi bahan makanan dapat tersedia dan ditangkap merupakan cara langsung bertahap, efisien (kurang lebih 68 %) , serta terkontrol – bukan mendadak, inefisien dan tidak terkontrol seperti pada nonbiologik. Energy bebas lain yang tidak ditangkap sebagai fosfat berenergi tinggi akan dibebaskan sebagai panas. Ini tidak harus dipandang “sebagai yang sia – sia” mengingat hal ini memastikan bahwa system respiratorik sebagi keseluruhan cukupaksergonik untuk dihilangkan dari keseimbangan , memungkinkan aliran satu arah secara kontinu dan penyediaan ATP yang konstan. Pada hewan berdarah panas. Hal ini turut berperan dalam mempertahankan suhu tubuh. 4. Banyak racun menghambat rantai respirasi Sebagian besar informasi tantang rantai respirasi diperoleh dari penggunaan inhibitor, dan sebaliknya, hal ini telah memberi pengetahan mengenai mekanisme kerja beberapa jenis racun . untuk tujuan deskriptif, inhibitor dapat dibagi menjadi inhibitor untuk rantai respirasi sendiri, inhibitor fosforilasi oksidatif, pemutus pasangan fosforilasi oksidatif. Inhibitor yang menghentikan respirasi dengan menyekat rantai respirasi berkerja pada tiga tempat. Tempat pertaa dihamba oleh olongan barbiturat seperti amobarbitual, anti biotic pirisidin A, dan intektisida serta racun ikan rotenon. Semua inhibitor ini mencegah oksidasi substrat yang berhubungan langsung dengan rantai respirasi lewat enzim dehidrogenaseterikat NAD, dengan menyekat pemindahandari FeS ke Q. dalam takaran yang cukup, pemberian inhibitor ini secara in vivo akan berakibat fatal. Dimerkaprol dan antimisi A menghambat rantai respirasi antara stokrom b dan sitokrom c. racun klasik seperti H₂S, karbon monoksida serta sianida menghambat sitokrom oksidase dengan demikian dapat menghentikan respirasi secara total. Karboksin dan TCA secara spesifik menghambat dehidrogenase ke Q, sedangkan manolat merupakan inhibitor kompentitif enzim suksinat dehidrogenase. Anti biotic oligomisin menyebabkan penyekatan (blockade) seluruhproses oksidasi dan fosforilasi dalam mitokondria utuh. Meskipun demikian, dengan adanya unsur pemutus pasangan membuktikan bahwa preparat olgomisin tidak bekerja langsung pada rantai respirasi, tetapi bekerja kemudian pada satu tahap dalam fosforilasi. Pemutusan pasangan (uncoupler) bekerja memisahkan proses oksidasi dalam rantai respirasi dari proses fosforilasi, dan hal ini dapat menjelaskan kerja toksik senyawa – senyawa in vivo. Pemisah kedua proses tersebut akan membuat respirasi tidak terkontrol karena konsentrasi ADP atau P₁ tidak lagi membatasi laju respirasi. Preparat pemutus pasangan yang paling sering di gunakan adalah 2,4 dinitrofenol, tetapi juga ada beberapa senyawa lain yang bekerja dengan cara serupa, yaitu dinitrofenol, tetapi juga ada beberapa senyawa lain yang bekerja dengan cara serupa, yaitu dinitrokresol, petakklofenol dan CCCP (in – klorokarbonil sianida fenilhidrazon). Senyawa terakhir ini dimiliki keaktifan sekitar 100 kali lebih besar dari pada keaktifan dinitrofenol. 5. Enzim ATP Sintase Yang Terletak Pada Membran Membentuk ATP Selisih potensial elektro kimia digunakan untuk menggerakkan enzim ATP sintase dimembran yang akan membentuk ATP pada adanya P1 + ADP dengan demikian tidak ada intermediate berenergi tinggi yang digunakan bersama, baik oleh proses oksidasi maupun fosforilasi seperti di syaratkan dalam hipotesis kimiawi. Tersebar pada permukaan membran interna adalah kompleks yang melaksanakan fosforilasi dan bertanggung jawab atas produksi ATP. Pada Gambar 3.8, kotak biru (gelap) di bawah menunjukkan reaksi oksidasi-reduksi yang terjadi pada masing-masing kompleks enzim. Singkatan-singkatan diuraikan sebagai berikut: FMN: flavin mononukleotida, Fe2+S: besi tereduksi-sulfur, Fe3+S: besi teroksidasi-sulfur, cyt: sitokrom, CoQ: koenzim Q. 1. Kompleks I Pada tahap ini, masing-masing molekul NADH memindahkan 2 elektron berenergi tinggi ke FMN, kemudian ke protein besi-sulfur dan terakhir ke koenzim Q (ubiquinon) 2. Kompleks II FADH2 dihasilkan oleh suksinat dehidrogenase dalam siklus asam sitrat, memindahkan elektron ke CoQ melalui kompleks II. FADH2 dihasilkan oleh asil KoA dehidrogenase dalam oksidasi beta asam lemak, memindahkan elektron ke CoQ melalui kompleks yang sama. 3. Kompleks III CoQ memindahkan elektron ke serangkaian sitokrom dan protein besi-sulfur. Sitokrom terdiri atas kelompok heme seperti hemoglobin dan besi dengan heme menerima elektron. 4. Kompleks IV Penerima terakhir dari rantai transport elektron adalah kompleks besar terdiri atas 2 heme dan 2 atom tembaga. 5. Kompleks V Pada tahap ini, protein kompleks yang mengkatalisis konversi ADP menjadi ATP, diisikan oleh gradien kemiosmotik. Proton mengalir kembali ke matriks mitokondria melalui kompleks ATP sintase dan energi berasal dari penurunan gradien pH digunakan untuk membentuk ATP. Pada fosforilasi oksidatif, pelibatan NADH menghasilkan pembentukan 3 molekul ATP, sedangkan pelibatan FADH2 menghasilkan pembentukan 2 molekul ATP. Tabel 3.2 Informasi tentang enzim yang berperan dalam fosforilasi oksidatif Nama Penyusun kDa Polypeptides Kompleks I NADH dehydrogenase (or) NADH-coenzyme Q reductase 800 25 Kompleks II Succinate dehydrogenase (or) Succinate-coenzyme Q reductase 140 4 Kompleks III Cytochrome C – coenzyme Q oxidoreductase 250 9-10 Kompleks IV Cytochrome oxidase 170 13 Kompleks V ATP synthase 380 12-14 E. KESIMPULAN 1. Reaksi berlangsung spontan bila terjadi pelepasan energi bebas (tG negatif) yaitu reaksi tersebut bersifat eksergonik, dan jika tG positif, reaksi hanya berlangsung bila diperoleh energi bebas, reaksi ini bersifat endergonik. 2. ATP adalah zat perantara penukar energi bebas, yang merangkaikan proses-proses yang bersifat eksergonik dengan proses-proses yang bersifat endergonik. 3. Enzym oksidase dan dehidrogenase memiliki peran utama dalam proses rantai pernapasan. 4. Komplek-komplek enzym dalam rantai pernapasan menggunakan potensial energi dari gradien proton untuk mensintesa ATP dari ADP dan Pi. Dengan demikian jelas terlihat bahwa rangkaian reaksi oksidasi terangkai erat dengan fosforilasi. 5. Terdapat sejumlah senyawa kimia yang dapat menghambat rangkaian reaksi oksidasi dan peristiwa fosforilasi atau memutus rangkaian oksidasi dan fosforilasi. 6. Terdapat protein pengangkut khusus untuk perlintasan beberapa ion dan metabolit pada membran mitokondria